Tikrit university College of Engineering Mechanical Engineering Department

Lectures on Engineering Analysis

Chapter 3 Laplace Transforms

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

Engineering Analysis

Assiste

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

Laplace Transform

Pierre Simmon Marquis De Laplace (1749-1827), a French Mathematician introduced Laplace NaZ. Transformations.

Laplace transformation is a technique for solving differential equations.

Or Laplace Transformations is a powerful Technique; it replaces operations of calculus by

operations of Algebra.

For e.g. With the application of L.T to an Initial value problem, consisting of an Ordinary(or Partial) differential equation (O.D.E) together with initial conditions is reduced to a problem of solving an algebraic equation (with any given Initial conditions automatically taken Assiste

General Transformation

19.10.2024

In this chapter we use the Laplace transform to convert a problem for an unknown function f into a simpler problem for F, solve for F, and then recover f from its transform F.

Definition of Laplace transform

Let f(t) be a function defined for $t \ge 0$, and satisfies certain conditions to be named later. Nazzi The **Laplace Transform of** *f* is defined as

$$L\{f(t)\} = F(s) = \int_0^\infty e^{-st} f(t) dt$$

Here, L is called Laplace Transform operator. The function f(t) is known as determining function, depends on t. The new function which is to be determined F(s) is called generating function, depends on *s*.

Note here question will be in t and answer will be in s.

$$F(s) = \int_0^\infty f(t) e^{-st} dt$$

For example the Laplace transform of f(t) = 2 for $t \ge 0$ is: $L\{f(t)\} = \int_{-\infty}^{\infty} e^{-st} f(t) t$

$$L\{f(t)\} = \int_{t=0}^{\infty} e^{-st} f(t) dt$$
$$= \int_{t=0}^{\infty} e^{-st} 2 dt$$
$$= 2\left[\frac{e^{-st}}{-s}\right]_{t=0}^{\infty}$$
$$= 2(0 - (-1/s)) = \frac{2}{s}$$
Engineering Analysis

Laplace transforms of common functions

Exponential function
$$f(t) = e^{at}$$

$$L[f(t)u(t)] = \int_{0}^{\infty} e^{at} e^{-st} dt = \int_{0}^{\infty} e^{-(s-a)t} dt = \left\lfloor \frac{-e^{-(s-a)t}}{(s-a)} \right\rfloor_{0}^{\infty} = \frac{1}{s-a}$$

$$L[e^{3t}] = \frac{1}{s-3}$$

$$L[e^{3t}] = \int_{0}^{\infty} e^{-st} f(t) dt = F(s)$$

$$L[f(t)u(t)] = \int_{0}^{\infty} te^{-st} dt$$

$$f(t) = t$$
Per parts integration
$$u = t; \quad u' = 1$$

$$v' = e^{-st}; \quad v = \frac{-e^{-st}}{s}$$

$$L[f(t)u(t)] = \int_{0}^{\infty} te^{-st} dt = \left[\frac{-t e^{-st}}{s} \right]_{0}^{\infty} - \int_{0}^{\infty} \frac{1 \cdot (-e^{-st})}{s} dt = 0 + \left[\frac{-e^{-st}}{s^{2}} \right]_{0}^{\infty} = \frac{1}{s^{2}}$$

$$L[f(t)u(t)] = \int_{0}^{\infty} te^{-st} dt \qquad \int uv = uv - \int u'v \qquad u = t; \quad u' = 1$$

$$U[f(t)u(t)] = \int_{0}^{\infty} te^{-st} dt = \left[\frac{-t e^{-st}}{s} \right]_{0}^{\infty} - \int_{0}^{\infty} \frac{1 \cdot (-e^{-st})}{s} dt = 0 + \left[\frac{-e^{-st}}{s^{2}} \right]_{0}^{\infty} = \frac{1}{s^{2}}$$

$$L[f(t)u(t)] = \int_{0}^{\infty} t^{2} e^{-st} dt \qquad \int uv = uv - \int u'v \qquad u = t^{2}; \quad u' = 2t$$

$$U[f(t)u(t)] = \int_{0}^{\infty} t^{2} e^{-st} dt = \left[\frac{-t^{2} e^{-st}}{s} \right]_{0}^{\infty} - \int_{0}^{\infty} \frac{-2te^{-st}}{s} dt = 0 + \frac{2}{s} \int_{0}^{\infty} te^{-st} dt = \frac{2}{s} \int_{0}^{\infty} e^{-st} f(t) dt = F(s)$$

$$L[f(t)u(t)] = \int_{0}^{\infty} t^{2} e^{-st} dt = \left[\frac{-t^{2} e^{-st}}{s} \right]_{0}^{\infty} - \int_{0}^{\infty} \frac{-2te^{-st}}{s} dt = 0 + \frac{2}{s} \int_{0}^{\infty} te^{-st} dt = \frac{2}{s} \int_{0}^{\infty} \frac{1}{s} \int_{0}^{\infty} \frac{1$$

Engineering Analysis

 s^{n+1}

Laplace Transformation of t^n

We know that $L{f(t)} = \int_0^\infty e^{-st} f(t) dt = F(s)$ $\implies L\{f(t)\} = \int e^{-st} t^n \, dt$ Put $st = x \implies t = \frac{x}{s}$ $dt = \frac{1}{s} dx$ As $t \to 0$ to $\infty \implies x \to 0$ to ∞ $\implies L\{t^n\} = \int e^{-x} \left(\frac{x}{s}\right)^n \frac{1}{s} dx$ $\implies L\{t^n\} = \frac{1}{s^{n+1}} \int_{0}^{\infty} e^{-x} x^n \, dx$ $=\frac{1}{s^{n+1}}\Gamma(n+1) \qquad \left[\because \ \Gamma(n)=\int e^{-x} x^{n-1} dt , n \ge 0\right]$ $L\{t^n\} = \frac{n!}{s^{n+1}} \quad [\because \ \Gamma(n+1) = n!]$ Example 1 find Laplace transform of $t^{\frac{1}{2}}$ L{ t^{n} } = $\frac{n!}{s^{n+1}}$ L{ $t^{\frac{1}{2}}$ } = $\frac{\frac{1}{2}!}{\frac{1}{2}+1}$ $= \frac{1}{s^{\frac{1}{2}+1}} \Gamma\left(\frac{3}{2}\right) = \frac{1}{s^{\frac{3}{2}}} \frac{\sqrt{\pi}}{2} \qquad [\because \ n\Gamma(n) = n!]$

Definition of Gamma function

$$\Gamma(n) = \int_{0}^{\infty} e^{-t} t^{n-1} dt , n \ge 0$$

$$(OR)$$

$$\Gamma(n) = \int_{0}^{\infty} e^{-x} x^{n-1} dt , n \ge 0.$$
ote: i) $\Gamma(n+1) = n\Gamma(n) = n!$
ii) $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

lazzal

19.10.2024

Ν

Example 2 find Laplace transform of $t - \overline{2}$

Laplace transform of $cos(\omega t)$

$$L(\cos(7t)) = \frac{s}{s^2 + 49}$$

Note: i) $\Gamma(n+1) = n\Gamma(n) = n!$ ii) $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ L{f(t)} = $\int_0^\infty e^{-st} f(t) dt = F(s)$

Laplace transform of sin (ωt)

$$\begin{aligned} L[\sin(\omega t)] &= \int_{0}^{\infty} \frac{(e^{j\omega t} - e^{-j\omega t})}{2j} e^{-st} dt = \frac{1}{2j} \left[\int_{0}^{\infty} e^{-(s-j\omega)t} dt - \int_{0}^{\infty} e^{-(s+j\omega)t} dt \right] \\ &= \frac{1}{2j} \left[\frac{1}{s-j\omega} - \frac{1}{s+j\omega} \right] \\ &= \frac{\omega}{s^2 + \omega^2} \end{aligned}$$

Example find

$$L(\sin(6t)) = \frac{6}{s^2 + 36}$$

19.10.2024

8

Engineering Analysis

Laplace transformation of hyperbolic

Laplace transformation of cosh at $L \{ cosh at \}$ Solution: since $\cosh at = \frac{e^{at} + e^{-at}}{2}$ $L\{f(t)\} = \int_0^\infty e^{-st} f(t)dt = F(s)$ Now, $L\{\cosh at\} = \frac{1}{2} [L\{e^{at} + e^{-at}\}]$ $=\frac{1}{2}[L(e^{at}) + L(e^{-at})]$ $=\frac{1}{2}\left[\frac{1}{s-a}+\frac{1}{s+a}\right]$ $\therefore L[\cosh at] = \frac{s}{s^2 - a^2}$ _ vOV f(t)Name F(s)f(t) = 1Step $\frac{1}{r^2}$ f(t) = tRamp $f(t) = e^{at}$ Exponential

Solution: since sinh at = $\frac{e^{at} - e^{-at}}{2}$ Laplace transformation of sinh at $L{f(t)} = \int_0^\infty e^{-st} f(t)dt = F(s)$ Now, $L\{\sinh at\} = \frac{1}{2} [L\{e^{at} - e^{-at}\}]$ $=\frac{1}{2}[L(e^{at}) - L(e^{-at})]$ $=\frac{1}{2}\left|\frac{1}{s-a}-\frac{1}{s+a}\right|$ $\therefore L[\sinh at] = \frac{a}{a^2 - a^2}$

19.10.2024

First shaft property
Statement: If
$$L\{f(t)\} = F(s)$$
 then $L\{e^{at}f(t)\} = F(s-a)$
proof
 $L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt = F(s)$
 $L[e^{-at}f(t)] = \int_{0}^{\infty} [e^{-at}f(t)] e^{-st} dt$
 $= \int_{0}^{\infty} f(t) e^{-(s+a)t} dt = F(s+a)$
 $L[e^{-at}f(t)] = F(s+a)$

• whenever we want to evaluate $L\{e^{at}f(t)\}$, first evaluate $L\{f(t)\}$ which is equal to F(s) and then

evaluate $L\{e^{at}f(t)\}$, which will be obtained simply, by substituting s - a in place of a in F(s).

Example : find the Laplace of $e^{-at} \cos(\omega t)$ using shaft property

solution

In this case,
$$f(t) = cos(\omega t) so$$
,
 $F(s) = \frac{s}{s^2 + w^2}$
and $F(s+a) = \frac{(s+a)}{(s+a)^2 + w^2}$

(s+a)

$$L[e^{-at}\cos(\omega t)] = \frac{(s+a)}{(s+a)^2 + (\omega)^2}$$

Engineering Analysis

+ W

Laplace transformations of derivatives

Nazze Statement: If $L{f(t)} = F(s)$, then $L{f'(t)} = sF(s) - f(0)$ $L\{f''(t)\} = s^2 F(s) - sf(0) - f'(0)$ $L\{f^{(n)}(t)\} = s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{n-1}(0)$ (t)] = F(s), we want to show: If the L[f(t)] = F(s), we want to show: $L[\frac{df(t)}{dt}] = sF(s) - f(0)$ Integrate by parts: $u = e^{-st}$, $du = -se^{-st}dt$ and $L\{f(t)\} = \int_0^\infty e^{-st} f(t)dt = F(s)$ $dv = \frac{df(t)}{dt}dt = df(t), so v = f(t)$ Making the previous substitutions gives, $L\left[\frac{df}{dt}\right] = f(t)e^{-st}\Big|_{0}^{\infty} - \int_{0}^{\infty} f(t)\left[-se^{-st}\right]dt$ $L\left|\frac{df(t)}{dt}\right| = sF(s) - f(0)$ $=0-f(0)+s\int_{-st}^{\infty}f(t)e^{-st}dt$

Engineering Analysis

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

We can extend the previous to show:

$$L\left[\frac{df(t)^{2}}{dt^{2}}\right] = s^{2}F(s) - sf(0) - f'(0)$$
$$L\left[\frac{df(t)^{3}}{dt^{3}}\right] = s^{3}F(s) - s^{2}f(0) - sf'(0) - f''(0)$$

general case

$$L\left[\frac{df(t)^{n}}{dt^{n}}\right] = s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0)$$

—…—J

 (\mathbf{U})

Examples

Example: $f(t) = t^2$ $L\{t^2\} = ?$ f(0) = 0, f'(0) = 0, f''(0) = 2 $L\{f''\} = s^2 L\{f\} - s f(0) - f'(0) = 0$ $L\{2\} = 2L\{1\} = \frac{2}{s} = s^2 L\{t^2\} \therefore L\{t^2\} = \frac{2}{s^3}$

2nd derivative

Ex:
$$L \{ \sin 3t \} f(t) = \sin 3t$$

 $f'(t) = 3\cos 3t$
 $f''(t) = 9\sin 3t$
 $L \{ -9\sin 3t \} = s^2 L \{ \sin 3t \} - 3$
 $(s^2 + 9)L \{ \sin 3t \} = 3$ $\therefore L \{ \sin 3t \} = \frac{3}{s^2 + 9}$

thamer Nazzal

12

Engineering Analysis

Transform of integrals

Time integration

$$L[\int_{0}^{t} f(x)dx] = \int_{0}^{t} \left[\int_{0}^{t} f(x)dx\right] e^{-st}dt$$

$$u = \int_{0}^{t} f(x)dx; \quad u' = f(t)$$

$$u = \int_{0}^{t} f(x)dx; \quad u' = f(t)$$

$$u = \int_{0}^{t} f(x)dx; \quad u' = f(t)$$

$$u' = e^{-st}; \quad v = -\frac{1}{s}e^{-st}$$

$$L[\int_{0}^{t} f(x)dx] = [-\frac{1}{s}e^{-st}\int_{0}^{t} f(x)dx]_{0}^{\infty} - \int_{0}^{\infty} [-\frac{1}{s}e^{-st}]f(t)dt = \frac{1}{s}\int_{0}^{\infty} f(t)e^{-st}dt$$

$$L[\int_{0}^{t} f(x)dx] = \frac{1}{s}F(s)$$

$$L[f(t)] = \int_{0}^{\infty} e^{-st} f(t)dt = F(s)$$
Example
Find $\mathcal{L}\left\{\int_{0}^{t} e^{-x}\cos x dx\right\}$.
solution

$$L[e^{-at}\cos(\omega t)] = \frac{(s+a)}{(s+a)^{2} + (\omega)^{2}}$$

Multiplication of 't'
Theorem
If
$$LL\{f(t) = F(s)\}$$
, then $L\{t.f(t) = -\frac{d}{ds}F(s)\}$
 $L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t)dt = F(s)$
 $\frac{d}{ds}F(s) = \frac{d}{ds} \left[\int_{0}^{\infty} e^{-st} f(t)dt\right]$
 $= \int_{0}^{\infty} f(t) \left(e^{-st}\right) dt$
 $= -L\{t f(t)\}$
 $\therefore L\{t.f(t)\} = -\frac{d^{R}}{ds}$
 $L\{t^{n}.f(t)\} = -\frac{d^{n}}{ds^{n}}[F(s)] = -\frac{d^{n}F}{ds^{n}}$
 $L\{t^{(t)}, f(t)\} = -\frac{d^{n}}{ds^{n}}[F(s)] = -\frac{d^{n}F}{ds^{n}}$
 $\therefore L\{\frac{f(t)}{t}\} = \int_{s}^{\infty} F(s) ds = L\{\frac{f(t)}{t}\}$

Example: find Laplace transform of t^2e^{4t} $L(t^2 e^{4t})$ $L\{t^n, f(t)\} = -\frac{d^n}{ds^n}[F(s)] = -\frac{d^n F}{ds^n}$ $L(e^{4t}) = \frac{1}{s-4}$ $L(t^2 e^{4t}) = -\frac{d}{ds}(\frac{1}{s-4}) = \frac{1}{(s-4)^2}$ $L[e^{-at}f(t)] = F(s+a)$ $L(t^2 e^{4t}) = -\frac{d^2}{ds^2} \left(\frac{1}{s-4}\right) = \frac{2}{(s-4)^3}$ 1.67~... $t^n = \frac{n!}{s^{n+1}}$ Example Find $L\{t \text{ sin } at\}$

Sol: we know that $L\{t, f(t)\} = -\frac{dF}{ds}$

Here
$$f(t) = \sin at$$

 $\Rightarrow F(s) = \left[\frac{a}{s^2 + a^2}\right]$
 $L\{t \sin at\} = -\frac{d}{ds}\left\{\frac{a}{s^2 + a^2}\right\} = \frac{2as}{(s^2 + a^2)^2}$

...

Engineering Analysis

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

2

Linearity Linearity of Laplace transform

$$L[c_1f_1(t) + c_2f_2(t)] = c_1F_1(s) + c_2F_2(s)$$

Example of function *f* :

 $f(t) = 5 e^{-2t} - 3 \sin(4t).$

Laplace transform by linearity: we find

$$L(f(t)) = 5 L(e^{-2t}) - 3 L(\sin(4t))$$

$$=\frac{5}{s+2}-\frac{12}{s^2+16.}$$

As an another example, by property)

L(5
$$e^{5t}$$
 + cos(4t))
= L(5 e^{5t}) + L(cos(4t)) = $\frac{5}{s-5} + \frac{s}{s^2 + 16}$

16

hamer Natla

An example where both (1) and (2) are used,

$$L(3 t^{7} + 8) = L(3 t^{7} + L(8) = 3\left(\frac{7!}{s^{8}}\right) + 8\left(\frac{1}{s}\right)$$

As an example, we determine

$$L(3 t^{7} + 8) = L(3 t^{7} + L(8) = 3 \left(\frac{7!}{s^{8}}\right) + 8(\frac{1}{s})$$
As an example, we determine
$$\mathcal{L}(3 + e^{6t})^{2} = \mathcal{L}(3 + e^{6t})(3 + e^{6t}) = \mathcal{L}(9 + 6e^{6t} + e^{12t})$$

$$= \mathcal{L}(9) + \mathcal{L}(6e^{6t} + \mathcal{L}(e^{12t}))$$

$$= 9\mathcal{L}(1) + 6\mathcal{L}(e^{6t}) + \mathcal{L}(e^{12t})$$

$$= \frac{9}{s} + \frac{6}{s - 6} + \frac{1}{s - 12}$$
As a standard prove

1. Table of Laplace transforms

P

Original	Image		
f(t)	F(s)		
$f(t)e^{at}$	F(s-a)		
f(at)	$\frac{1}{a}F(\frac{s}{a})$		
f'(t)	sF(s) - f(0+)		
f''(t)	$s^{2}F(s) - sf(0+) - f'(0+)$		
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0+) - s^{n-2}f'(0+) - \dots - f^{(n-1)}(0+)$		
tf(t)	-F'(s)		
$t^n f(t)$	$(-1)^n F^{(n)}(s)$		
$\int_{0}^{t} f(x) dx$	$\frac{1}{s}F(s)$		

The Laplace transform

The most commonly used transform pairs

The	most commonly	/ u	sed transform p	airs	31
Original	Image		Original	Image	
а	$\frac{a}{s}$		$sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	
t	$\frac{1}{s^2}$		$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$	
t^2	$\frac{2}{s^3}$	<	$\sinh(\omega t)$	$\frac{\omega}{s^2-\omega^2}$	
$t^n, n \in N$	$\frac{n!}{s^{n+1}}$	-	$\cosh(\omega t)$	$\frac{s}{s^2 - \omega^2}$	
e ^{at}	$\frac{1}{s-a}$		$t\sin(\omega t)$	$\frac{2s\omega}{(s^2+\omega^2)^2}$	
te ^{at}	$\frac{1}{(s-a)^2}$		$t\cos(\omega t)$	$\frac{s^2 - \omega}{(s^2 + \omega^2)^2}$	
$S t^2 e^{at}$	$\frac{2}{(s-a)^3}$		$e^{at}\sin(\omega t)$	$\frac{\omega}{\left(s-a\right)^2+\omega^2}$	
$t^n e^{at}, n \in N$	$\frac{n!}{(s-a)^{n+1}}$		$e^{at}\cos(\omega t)$	$\frac{s-a}{\left(s-a\right)^2+\omega^2}$	

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

Inverse Laplace transformations

$$L^{-1}\{F(s)\} = f(t) \qquad f(t) = L^{-1}\{F(s)\}$$

L{
$$f(t)$$
} = $F(s)$ then $f(t)$ is called the inverse Laplace transform of $f(s)$ and is denoted by
 $L^{-1}{F(s)} = f(t)$ $f(t) = L^{-1}{F(s)}$
Where L^{-1} is inverse Laplace
Example
We have $\mathcal{L}^{-1}\left[\frac{4}{s-3}\right]_{t} = 4e^{3t}$
Because $\frac{4}{s-3} = \mathcal{L}\left[4e^{3t}\right]^{1}$

~~.

0

Example

$$\mathcal{L}(\sin(6t)) = \frac{6}{s^2 + 36}.$$
$$\mathcal{L}^{-1}\left(\frac{6}{s^2 + 36}\right) = \sin(6t)$$

х.

Example find the inverse Laplace transform of

Since we know, that

it will be helpful to rearrange the original formula

$$\frac{s}{s^{2} + \omega^{2}} \stackrel{\circ}{=} \cos \omega t \quad and \quad \frac{\omega}{s^{2} + \omega^{2}} \stackrel{\circ}{=} \sin \omega t,$$
$$\frac{4s + 7}{s^{2} + 16} = 4 \frac{s}{s^{2} + 16} + \frac{7}{4} \frac{4}{s^{2} + 16}$$

 $f(t) = 4\cos 4t + \frac{7}{4}\sin 4t, t \ge 0$

 $F(s) = \frac{4s+7}{2+1}$

Now we can directly write the result by taking the inverse Laplace $L^{-1} \{F(s)\} = f(t)$

Example find the inverse Laplace transform of $Y(s) = \frac{4(s-1)}{(s-1)^2+4}$

$$\cos 2t \Leftrightarrow \frac{s}{s^2 + 4} \qquad e^t \cos 2t \Leftrightarrow \frac{s - 1}{(s - 1)^2 + 4}.$$

Hence,
$$y(t) = \mathcal{L}^{-1} \left\{ \frac{4(s - 1)}{(s - 1)^2 + 4} \right\}$$
$$= 4 \mathcal{L}^{-1} \left\{ \frac{s - 1}{(s - 1)^2 + 4} \right\}$$

 $= 4e^t \cos 2t$.

Engineering Analysis

Example find

Engineering Analysis

Example

Find:
$$\mathcal{L}^{-1}\left(\frac{4s+1}{s^2+10s+34}\right)$$
.

Here the denominator does not factor over the reals. Hence complete the square.

 $s^{2} + 10s + 34 = \underbrace{s^{2} + 10s + 25}_{-25} - 25 + 34 = (s+5)^{2} + 9.$ $\mathcal{L}^{-1}\left(\frac{4s+1}{s^2+10s+34}\right) = \mathcal{L}^{-1}\left(\frac{4s+1}{(s+5)^2+9}\right) \quad \text{this s must now be} \\ \text{made into (s+5)}.$ $= \mathcal{L}^{-1} \left(\frac{4(s+5)-20+1}{(s+5)^2+9} \right) = \mathcal{L}^{-1} \left(\frac{4(s+5)-19}{(s+5)^2+9} \right)$ $= 4\mathcal{L}^{-1}\left(\frac{(s+5)}{(s+5)^2+9}\right) - 19\mathcal{L}^{-1}\left(\frac{1}{(s+5)^2+9}\right)$ $\frac{\omega}{(s-a)^2+\omega^2}$ $e^{at} \sin(\omega t)$ $= 4e^{-5t}\cos(3t) - \frac{19}{3}\mathcal{L}^{-1}\left(\frac{3}{(s+5)^2+9}\right) \qquad e^{at}\cos(\omega t)$ $\frac{s-a}{(s-a)^2+\omega^2}$ $= 4e^{-5t}\cos(3t) - \frac{19}{2}e^{-5t}\sin(3t).$

23

Engineering Analysis

PARTIAL FRACTION EXPANSION

Definition -- Partial fractions are several fractions whose sum equals a given fraction Purpose --Working with transforms requires breaking complex fractions into simpler fractions to allow use of tables of transforms

Case 1 : If the denominator has non-repeated linear factors (s - a), (s - b), (s - c), then

$$\frac{f(s)}{(s-a)(s-b)(s-c)} = \frac{A}{(s-a)} + \frac{B}{(s-b)} + \frac{C}{(s-c)}$$

Case 2 : If the denominator has repeated linear factors (s - a), (n times), then

$$\frac{f(s)}{(s-a)^n} = \frac{A_1}{(s-a)} + \frac{A_2}{(s-a)^2} + \frac{A_3}{(s-a)^3} + \dots + \frac{A_n}{(s-a)^n}$$

Case 3 : If the denominator has non-repeated quadratic factors (s² + as + b), $(s^2 + cs + d)$,

$$\frac{f(s)}{(s^2 + as + b)(s^2 + cs + d)} = \frac{As + B}{(s^2 + as + b)} + \frac{Cs + D}{(s^2 + cs + d)}$$

Case 4 : If the denominator has repeated quadratic factors $(s^2 + as + b)$, (n times), then

$$\frac{f(s)}{(s^2 + as + b)^n} = \frac{As + B}{(s^2 + as + b)} + \frac{Cs + D}{(s^2 + as + b)^2} + \dots \text{ (n times)}$$

Engineering Analysis

Example find the inverse Laplace transform of
$$\frac{3s+5}{s^2-3s-10} = \frac{3s+5}{(s-5)(s+2)}$$
We are looking for coefficients *A*, *B* and *C*

$$\frac{3s+5}{(s-5)(s+2)} = \frac{A}{s-5} + \frac{B}{s+2}$$
To determine *A* and *B*, first clear the denominators:
$$\frac{3s+5}{(s-5)(s+2)} = \frac{A}{s-5} + \frac{B}{s+2}$$
We get
$$3s+5 = A(s+2) + B(s-5) = (A+B)s + 2A - 5B.$$
By comparing the coefficients of *s* and constant coefficients, we get two equations in *A* and *B*.
$$A + B = 3$$

$$2A - 5B = 5$$
Hence,
$$A = \frac{20}{7}, \text{ and } B = \frac{1}{7}.$$
We can now determine the inverse transform
$$\mathcal{L}^{-1}\left(\frac{3s+5}{(s-5)(s+2)}\right) = \mathcal{L}^{-1}\left(\frac{A}{s-5} + \frac{B}{s+2}\right)$$

$$= A\mathcal{L}^{-1}\left(\frac{1}{s-5}\right) + B\mathcal{L}^{-1}\left(\frac{1}{s+2}\right) = \frac{20}{7}e^{5t} + \frac{1}{7}e^{-2t}.$$

Engineering Analysis

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

-

19.10.2024

Example find the inverse Laplace transform of $F(s) = \frac{3s^2 + 5}{(s+1)(s+3)^2}$ $F(s) = \frac{3s^2 + 5}{(s+1)(s+3)^2} = \frac{A}{s+1} + \frac{B}{(s+3)^2} + \frac{C}{s+3}$ We are looking for coefficients *A*, *B* and *C* Multiplying the equation by its denominator $3s^2 + 5 = A(s+3)^2 + B(s+1) + C(s+1)(s+3)$ s = -1: $8 = 4A \implies A = 2$ Now we can substitute to get A,B; $s = -3: \quad 32 = -2B \Longrightarrow B = -16$ $s^2: \quad 3 = A + C \Longrightarrow C = 3 - A = 1$ the C coefficient can be obtained by comparison of s² factors Therefore F(s) $F(s) = \frac{2}{s+1} - \frac{16}{(s+3)^2} + \frac{1}{s+3}$ Inverse Laplace of F(s) $f(t) = 2e^{-t} - 16te^{-3t} + e^{-3t}, t \ge 0$

Example find the inverse Laplace transform of

We are looking for coefficients A, B and C

Multiplying the equation by its denominator

Now we can substitute to get A,B; the *C* coefficient can be obtained by comparison of s^2 factors

Therefore *F*(s)

Inverse Laplace of F(s)

$$F(s) = \frac{2s - 7}{(s + 6)(s^{2} + 4)}$$

$$\frac{2s - 7}{(s + 6)(s^{2} + 4)} = \frac{A}{s + 6} + \frac{Bs + C}{s^{2} + 4}$$

$$2s - 7 = A(s^{2} + 4) + (Bs + C)(s + 6)$$

$$s = -6: -19 = 40A \Rightarrow A = -\frac{19}{40}$$

$$s^{2}: 0 = A + B \Rightarrow B = -A = \frac{19}{40}$$

$$s^{0}: -7 = 4A + 6C \Rightarrow C = \frac{1}{6}(-7 + \frac{19}{10}) = -\frac{51}{60}$$

$$F(s) = -\frac{19}{40}\frac{1}{s+6} + \frac{19}{40}\frac{s}{s^2+4} - \frac{51}{120}\frac{2}{s^2+4}$$

$$f(t) = -\frac{19}{40}e^{-6t} + \frac{19}{40}\cos 2t - \frac{51}{120}\sin 2t, t \ge 0$$

28

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

Applications of D.E's by using Laplace and inverse Laplace transformations

Suppose the given D.Eq is of the form
$$a \frac{d^2y}{dt^2} + b \frac{dy}{dt} + y = f(t)$$
 \longrightarrow 1
is a Linear D.Eq of order 2 with constants a, b the boundary conditions are $y(0) = y'(0) = 0$
We Know that $L\{f^{(n)}(t)\} = s^n F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{n-1}(0)$
For the first derivative $L\{f'(t)\} = sF(s) - f(0)$ \longrightarrow $L[y'(t)] = s\overline{y}(s) - y(0)$
For the second derivative $L[y^2(t)] = s^2 L\{y\} - sy(0) - y'(0)$
By simplify $L\{y(t)\} = y(s)$ and $y^2(t)$ is the second derivative
[Step 1] Taking the Laplace transform of the equation (1)
i.e. $a L\{y'\} + b L\{y'\} + L\{y\} = L\{f(t)\}$
 $\Rightarrow a\{s^2 \overline{y}(s) - s y(0) - y'(0)\} + b\{s\overline{y}(s) - y(0)\} + \overline{y}(s) = F(s)$
Substituting in the initial conditions, we obtain
 $\Rightarrow as^2 \overline{y}(s) + bs \overline{y}(s) + \overline{y}(s) = F(s) \qquad \Rightarrow (as^2 + bs + 1) \overline{y}(s) = F(s)$
[Step 2] Simplify to find Y(s) = L{y} $\Rightarrow \overline{y}(s) = \frac{F(s)}{(as^2 + bs + 1)}$
[Step 3] Find the inverse transform $\Rightarrow y(t) = L^{-1}\{\overline{y}(s)\} = L^{-1}\{\frac{F(s)}{(as^2 + bs + 1)}\}$

Example: solve the following equation using Laplace transformation

$$y'' - 6y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = -3$
[Step 1] Transform both sides $\mathcal{L}\{y'' - 6y' + 5y\} = \mathcal{L}\{0\}$
 $(s^2 \mathcal{L}\{y\} - sy(0) - y'(0)) - 6(s\mathcal{L}\{y\} - y(0)) + 5\mathcal{L}\{y\} = 0$
[Step 2] Simplify to find Y(s) = L{y}
 $(s^2 \mathcal{L}\{y\} - s - (-3)) - 6(s\mathcal{L}\{y\} - 1) + 5\mathcal{L}\{y\} = 0$
 $(s^2 - 6s + 5)\mathcal{L}\{y\} - s + 9 = 0$
 $(s^2 - 6s + 5)\mathcal{L}\{y\} = s - 9$
 $\mathcal{L}\{y\} = \frac{s - 9}{s^2 - 6s + 5}$
[Step 3] Find the inverse transform y(t) Use partial fractions to simplify,

$$\mathcal{L}{y} = \frac{s-9}{s^2-6s+5} = \frac{a}{s-1} + \frac{b}{s-5} \qquad s-9 = a(s-5) + b(s-1) = (a+b)s + (-5a-b)$$

Equating the corresponding coefficients:

$$1 = a \neq b \qquad a = 2 -9 = 5a - b \qquad b = -1 Hence, \ \mathcal{L}{y} = \frac{s - 9}{s^2 - 6s + 5} = \frac{2}{s - 1} - \frac{1}{s - 5}.$$
 Inverse Laplace $y(t) = 2e^t - e^{5t}.$

Engineering Analysis

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

Example: solve the following equation using Laplace transformation

$$y'' - 3y' + 2y = e^{3t}$$
, $y(0) = 1$, $y'(0) = 0$

[Step 1] Transform both sides $(s^2 \mathcal{L}{y} - sy(0) - y'(0)) - 3(s\mathcal{L}{y} - y(0)) + 2\mathcal{L}{y} = \mathcal{L}{e^{3t}}$ [Step 2] Simplify to find $Y(s) = L{y}$

$$(s^{2}\mathcal{L}\{y\} - s - 0) - 3(s\mathcal{L}\{y\} - 1) + 2\mathcal{L}\{y\} = 1/(s - 3)$$

$$(s^{2} - 3s + 2)\mathcal{L}{y} - s + 3 = \frac{1}{(s - 3)}$$
$$(s^{2} - 3s + 2)\mathcal{L}{y} = s - 3 + \frac{1}{s - 3} = \frac{(s - 3)^{2} + 1}{s - 3}$$
$$\mathcal{L}{y} = \frac{s^{2} - 6s + 10}{(s^{2} - 3s + 2)(s - 3)} = \frac{s^{2} - 6s + 10}{(s - 1)(s - 2)(s - 3)}$$

[Step 3] Find the inverse transform y(t) by partial fractions,

$$\mathcal{L}{y} = \frac{s^2 - 6s + 10}{(s-1)(s-2)(s-3)} = \frac{5}{2} \frac{1}{s-1} - 2\frac{1}{s-2} + \frac{1}{2} \frac{1}{s-3}$$

Therefore,

$$y(t) = \frac{5}{2}e^{t} - 2e^{2t} + \frac{1}{2}e^{3t}$$
Engineering Analysis
Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

19.10.2024

Example solve the following equation using Laplace transformation $v'' + v = \sin 2t$, v(0) = 2, v'(0) = 1Solution Taking the Laplace transform of the $s^{2}L\{y\} - sy(0) - y'(0) + L\{y\} = 2/(s^{2} + 4)$ equation Letting $Y(s) = L\{y\}$, we have $(s^2 + 1)Y(s) - sy(0) - y'(0) = 2/(s^2 + 4)$ Substituting in the initial conditions, we obtain $(s^2 + 1)Y(s) - 2s - 1 = 2/(s^2 + 4)$ $Y(s) = \frac{2s^3 + s^2 + 8s + 6}{(s^2 + 1)(s^2 + 4)}$ Thus Using partial fractions $Y(s) = \frac{2s^3 + s^2 + 8s + 6}{(s^2 + 1)(s^2 + 4)} = \frac{As + B}{s^2 + 1} + \frac{Cs + D}{s^2 + 4}$ $2s^{3} + s^{2} + 8s + 6 = (As + B)(s^{2} + 4) + (Cs + D)(s^{2} + 1)$ Then $= (A+C)s^{3} + (B+D)s^{2} + (4A+C)s + (4B+D)$ Solving, we obtain A = 2, B = 5/3, C = 0, and D = -2/3. Thus $Y(s) = \frac{2s}{s^2 + 1} + \frac{5/3}{s^2 + 1} - \frac{2/3}{s^2 + 4} \qquad \text{Hence} \quad y(t) = 2\cos t + \frac{5}{3}\sin t - \frac{1}{3}\sin 2t$

Engineering Analysis

19.10.2024

Solving of differential equations by the Laplace transform

solve the following equation using Laplace transformation Example

$$x' + 4x = \sin 2t$$
, $x(0) = 3$

We know that

a

Equation in the Laplace form

We know that
Equation in the Laplace form
$$\begin{aligned}
x'(t) &= sX(s) - x(0) \\
sX(s) - 3 + 4X(s) &= \frac{2}{s^2 + 4} \\
x(s)(s + 4) - 3 &= \frac{2}{s^2 + 4} \\
x(s)(s + 4) - 3 &= \frac{2}{s^2 + 4} \\
x(s)(s + 4) - 3 &= \frac{2}{s^2 + 4} \\
x(s) &= \frac{3}{s^2 + 4} \\
x(s) &= \frac{3}{10} \\
x(s) &= \frac{3}{10$$

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

 $\sin \omega t \stackrel{\text{\tiny (a)}}{=} \frac{\omega}{s^2 + \omega^2}$

Example:-consider a problem that related to arises in the motion of a mass attached to a spring with external force, as shown in Figure |x|

Figure A block-spring system with an external force f(t).

The Equation of motion is

$$mx'' = -kx + f(t)$$
$$x'' = -\frac{k}{m}x + \frac{f(t)}{m}$$
$$A(t) = \frac{f(t)}{m}$$
 Then we have

Let $\omega^2 = \frac{k}{m}$ and $A(t) = \frac{f(t)}{m}$. Then, we have

$$x'' + \omega^2 x = A(t)$$
 Take $\omega = 2$ and $A(t) = \sin 3t$

Use Laplace transform method to solve the following IVP

Solution The Equation of motion became $\mathcal{L}{x'' + 4x} = \mathcal{L}{\sin 3t}$ Apply LTs on both sides of the DE $\mathcal{L}{x'' + 4x} = \mathcal{L}{\sin 3t}$ we get 3

$$\left(s^2 X(s) - s x(0) - x'(0)\right) + 4X(s) = \frac{3}{s^2 + 3^2}$$

Engineering Analysis

Assistant Prof. Dr. Eng. Ibrahim Thamer Nazzal

Plugging in the IC's, we get

$$X(s)(s^{2}+4) = \frac{3}{s^{2}+9}$$
$$X(s) = \frac{3}{(s^{2}+4)(s^{2}+9)}$$

By partial fraction decomposition

$$X(s) = \frac{As + B}{s^2 + 4} + \frac{Cs + D}{s^2 + 9}$$

We get

$$X(s)(s^{2} + 4) = \frac{3}{s^{2} + 9}$$

$$X(s) = \frac{3}{(s^{2} + 4)(s^{2} + 9)}$$

ecomposition

$$X(s) = \frac{As + B}{s^{2} + 4} + \frac{Cs + D}{s^{2} + 9}$$

$$B = \frac{3}{5} \qquad D = -\frac{3}{5} \qquad A = 0 \qquad C = 0$$

Thus,

$$X(s) = \frac{3}{5} \left(\frac{1}{s^2 + 4} \right) - \frac{3}{5} \left(\frac{1}{s^2 + 9} \right)$$
$$= \frac{3}{10} \left(\frac{2}{s^2 + 2^2} \right) - \frac{1}{5} \left(\frac{3}{s^2 + 3^2} \right)$$

Finally, applying inverse LT generates the PS to the original DE

$$\begin{split} x(t) &= \mathcal{L}^{-1} \{ X(s) \} \\ &= \mathcal{L}^{-1} \left\{ \frac{3}{10} \left(\frac{2}{s^2 + 2^2} \right) - \frac{1}{5} \left(\frac{3}{s^2 + 3^2} \right) \right\} \\ &= \frac{3}{10} \mathcal{L}^{-1} \left\{ \frac{2}{s^2 + 2^2} \right\} - \frac{1}{5} \mathcal{L}^{-1} \left\{ \frac{3}{s^2 + 3^2} \right\} \\ &= \frac{3}{10} \sin 2t - \frac{1}{5} \sin 3t \end{split}$$